CS61B Textbook
  • Contributors
  • DISCLAIMER
  • 1. Introduction
    • 1.1 Your First Java Program
    • 1.2 Java Workflow
    • 1.3 Basic Java Features
    • 1.4 Exercises
  • 2. Defining and Using Classes
  • 3. References, Recursion, and Lists
  • 4. SLLists
  • 5. DLLists
  • 6. Arrays
  • 7. Testing
  • 8. ArrayList
  • 9. Inheritance I: Interface and Implementation Inheritance
  • 10. Inheritance II: Extends, Casting, Higher Order Functions
    • 10.1 Implementation Inheritance: Extends
    • 10.2 Encapsulation
    • 10.3 Casting
    • 10.4 Higher Order Functions in Java
    • 10.5 Exercises
  • 11. Inheritance III: Subtype Polymorphism, Comparators, Comparable
    • 11.1 A Review of Dynamic Method Selection
    • 11.2 Subtype Polymorphism vs Explicit Higher Order Functions
    • 11.3 Comparables
    • 11.4 Comparators
    • 11.5 Chapter Summary
    • 11.6 Exercises
  • 12. Inheritance IV: Iterators, Object Methods
    • 12.1 Lists and Sets in Java
    • 12.2 Exceptions
    • 12.3 Iteration
    • 12.4 Object Methods
    • 12.5 Chapter Summary
    • 12.6 Exercises
  • 13. Asymptotics I
    • 13.1 An Introduction to Asymptotic Analysis
    • 13.2 Runtime Characterization
    • 13.3 Checkpoint: An Exercise
    • 13.4 Asymptotic Behavior
    • 13.6 Simplified Analysis Process
    • 13.7 Big-Theta
    • 13.8 Big-O
    • 13.9 Summary
    • 13.10 Exercises
  • 14. Disjoint Sets
    • 14.1 Introduction
    • 14.2 Quick Find
    • 14.3 Quick Union
    • 14.4 Weighted Quick Union (WQU)
    • 14.5 Weighted Quick Union with Path Compression
    • 14.6 Exercises
  • 15. Asymptotics II
    • 15.1 For Loops
    • 15.2 Recursion
    • 15.3 Binary Search
    • 15.4 Mergesort
    • 15.5 Summary
    • 15.6 Exercises
  • 16. ADTs and BSTs
    • 16.1 Abstract Data Types
    • 16.2 Binary Search Trees
    • 16.3 BST Definitions
    • 16.4 BST Operations
    • 16.5 BSTs as Sets and Maps
    • 16.6 Summary
    • 16.7 Exercises
  • 17. B-Trees
    • 17.1 BST Performance
    • 17.2 Big O vs. Worst Case
    • 17.3 B-Tree Operations
    • 17.4 B-Tree Invariants
    • 17.5 B-Tree Performance
    • 17.6 Summary
    • 17.7 Exercises
  • 18. Red Black Trees
    • 18.1 Rotating Trees
    • 18.2 Creating LLRB Trees
    • 18.3 Inserting LLRB Trees
    • 18.4 Runtime Analysis
    • 18.5 Summary
    • 18.6 Exercises
  • 19. Hashing I
    • 19.1 Introduction to Hashing: Data Indexed Arrays
      • 19.1.1 A first attempt: DataIndexedIntegerSet
      • 19.1.2 A second attempt: DataIndexedWordSet
      • 19.1.3 A third attempt: DataIndexedStringSet
    • 19.2 Hash Code
    • 19.3 "Valid" & "Good" Hashcodes
    • 19.4 Handling Collisions: Linear Probing and External Chaining
    • 19.5 Resizing & Hash Table Performance
    • 19.6 Summary
    • 19.7 Exercises
  • 20. Hashing II
    • 20.1 Hash Table Recap, Default Hash Function
    • 20.2 Distribution By Other Hash Functions
    • 20.3 Contains & Duplicate Items
    • 20.4 Mutable vs. Immutable Types
  • 21. Heaps and Priority Queues
    • 21.1 Priority Queues
    • 21.2 Heaps
    • 21.3 PQ Implementation
    • 21.4 Summary
    • 21.5 Exercises
  • 22. Tree Traversals and Graphs
    • 22.1 Tree Recap
    • 22.2 Tree Traversals
    • 22.3 Graphs
    • 22.4 Graph Problems
  • 23. Graph Traversals and Implementations
    • 23.1 BFS & DFS
    • 23.2 Representing Graphs
    • 23.3 Summary
    • 23.4 Exercises
  • 24. Shortest Paths
    • 24.1 Introduction
    • 24.2 Dijkstra's Algorithm
    • 24.3 A* Algorithm
    • 24.4 Summary
    • 24.5 Exercises
  • 25. Minimum Spanning Trees
    • 25.1 MSTs and Cut Property
    • 25.2 Prim's Algorithm
    • 25.3 Kruskal's Algorithm
    • 25.4 Chapter Summary
    • 25.5 MST Exercises
  • 26. Prefix Operations and Tries
    • 26.1 Introduction to Tries
    • 26.2 Trie Implementation
    • 26.3 Trie String Operations
    • 26.4 Summary
    • 26.5 Exercises
  • 27. Software Engineering I
    • 27.1 Introduction to Software Engineering
    • 27.2 Complexity
    • 27.3 Strategic vs Tactical Programming
    • 27.4 Real World Examples
    • 27.5 Summary, Exercises
  • 28. Reductions and Decomposition
    • 28.1 Topological Sorts and DAGs
    • 28.2 Shortest Paths on DAGs
    • 28.3 Longest Path
    • 28.4 Reductions and Decomposition
    • 28.5 Exercises
  • 29. Basic Sorts
    • 29.1 The Sorting Problem
    • 29.2 Selection Sort & Heapsort
    • 29.3 Mergesort
    • 29.4 Insertion Sort
    • 29.5 Summary
    • 29.6 Exercises
  • 30. Quicksort
    • 30.1 Partitioning
    • 30.2 Quicksort Algorithm
    • 30.3 Quicksort Performance Caveats
    • 30.4 Summary
    • 30.5 Exercises
  • 31. Software Engineering II
    • 31.1 Complexity II
    • 31.2 Sources of Complexity
    • 31.3 Modular Design
    • 31.4 Teamwork
    • 31.5 Exerises
  • 32. More Quick Sort, Sorting Summary
    • 32.1 Quicksort Flavors vs. MergeSort
    • 32.2 Quick Select
    • 32.3 Stability, Adaptiveness, and Optimization
    • 32.4 Summary
    • 32.5 Exercises
  • 33. Software Engineering III
    • 33.1 Candy Crush, SnapChat, and Friends
    • 33.2 The Ledger of Harms
    • 33.3 Your Life
    • 33.4 Summary
    • 33.5 Exercises
  • 34. Sorting and Algorithmic Bounds
    • 34.1 Sorting Summary
    • 34.2 Math Problems Out of Nowhere
    • 34.3 Theoretical Bounds on Sorting
    • 34.4 Summary
    • 34.5 Exercises
  • 35. Radix Sorts
    • 35.1 Counting Sort
    • 35.2 LSD Radix Sort
    • 35.3 MSD Radix Sort
    • 35.4 Summary
    • 35.5 Exercises
  • 36. Sorting and Data Structures Conclusion
    • 36.1 Radix vs. Comparison Sorting
    • 36.2 The Just-In-Time Compiler
    • 36.3 Radix Sorting Integers
    • 36.4 Summary
    • 36.5 Exercises
  • 37. Software Engineering IV
    • 37.1 The end is near
  • 38. Compression and Complexity
    • 38.1 Introduction to Compression
    • 38.2 Prefix-free Codes
    • 38.3 Shannon-Fano Codes
    • 38.4 Huffman Coding Conceptuals
    • 38.5 Compression Theory
    • 38.6 LZW Compression
    • 38.7 Summary
    • 38.8 Exercises
  • 39. Compression, Complexity, P = NP
    • 39.1 Models of Compression
    • 39.2 Optimal Compression, Kolmogorov Complexity
    • 39.3 Space/Time-Bounded Compression
    • 39.4 P = NP
    • 39.5 Exercises
Powered by GitBook
On this page
  • A Case Study Series
  • Case Study 1: Candy Crush
  • Case Study 2: Snapchat
  • Case Study 3: Friends...?
  • Impacts: Net Positive?
  1. 33. Software Engineering III

33.1 Candy Crush, SnapChat, and Friends

Previous33. Software Engineering IIINext33.2 The Ledger of Harms

Last updated 2 years ago

Transitioning away the theoretical analysis of Software Engineering and complexity management, this last section of the Software Engineering series will discuss more on how software has and continue to reshape society in our lifetime.

A Case Study Series

Case Study 1: Candy Crush

The mobile game Candy Crush tracks the number of days you have played in a row. Specifically with the following features:

  • Every consecutive day gets you a reward.

  • Progress tracking features:

    • Progress indicator

    • Up to 2 hours worth of a special item for that day that makes the game more fun.

More importantly: if you miss a day, the counter resets.

Why does this feature exist in Candy Crush?

Specifically, establishing a progress tracker tied with a reward system that punishes you instantly a day is missed? Well, this feature clearly encourages you to engage with the app every day.

Case Study 2: Snapchat

Despite being a slightly outdated example (as people have collectively voted it to be "out of style", unlike Taylor Swift), Snapchat incorporates a very similar feature as Candy Crush to keep users constantly engaged, and stay engaged every day.

Specifically, its "streak" feature has kept many people hooked for a very long time, as seeing the number "509" just makes you can't help but send another random shot of at a random angle that is so blurry with nothing distinguishable but the thick, red "S" sliced across the screen, to a random person from your high school whom you never talk to (True story).

Classic.

Case Study 3: Friends...?

What are some other engagement generating features? Big, social media tech companies definitely give solid answers.

Based on discussions in class, some of such features include:

  • LinkedIn: How many searches you appeared in.

  • Notifications in general.

  • Stories induce you to see them all.

  • Infinite scroll. (The most evil)

  • Recommendation algorithm on youtube and especially TikTok.

  • Playstation trophies.

Then, a natural question to ask here is, what are some of the positive and negative impacts of these technologies or features on our lives?

Impacts: Net Positive?

Every coin has a flip side, and so do the infamous, addictive technologies.

Going back to the social media case, for example. Some negative impacts of certain social media features that people have discussed include:

  • Addiction

  • Instead of having conversation with people, you fulfill your need to socialize with junk food socialization.

  • Less face to face interaction.

  • Toxic comparisons.

  • Opens you up to manipulation.

  • Fear of missing out (FOMO).

  • Disinformation spreads widely.

However, there are also some positive aspects of this unique, modern champagne problem:

  • Socialize, connection with humans in a way that overcome geographical and sometimes even cultural constraints.

  • Stay up to date with what’s going on.

  • Help you stay educated on important topics and issues.

  • See a wide range of diverse perspectives AND cute dogs.

Example: Is TikTok a net positive to the world?

According to a free, open discussion in lecture, here are some general thoughts:

  • Yes: Wholesome videos! (some)

  • No: Would have to run some numbers, but the time people spend on TikTok could be spent on something more useful.

  • Yes: People can create information, can spread information more easily that is counter to existing power structures.

  • No: People can spread misinformation / inaccurate information.

  • No: Attention spans are getting shorter.

  • No: Company collects massive amounts of information, bad privacy.

  • BIG YES: TikTok creates lot of jobs for people graduating from Berkeley with CS degrees (RIP Meta, FTX, Twitter…).

Whether or not these platforms or technology bring a net positive impact on the world is and will continue to be up for debate. The important message here is the importance to reflect on the social impacts of these technology, especially through a dichotomous lens.