CS61B Textbook
  • Contributors
  • DISCLAIMER
  • 1. Introduction
    • 1.1 Your First Java Program
    • 1.2 Java Workflow
    • 1.3 Basic Java Features
    • 1.4 Exercises
  • 2. Defining and Using Classes
  • 3. References, Recursion, and Lists
  • 4. SLLists
  • 5. DLLists
  • 6. Arrays
  • 7. Testing
  • 8. ArrayList
  • 9. Inheritance I: Interface and Implementation Inheritance
  • 10. Inheritance II: Extends, Casting, Higher Order Functions
    • 10.1 Implementation Inheritance: Extends
    • 10.2 Encapsulation
    • 10.3 Casting
    • 10.4 Higher Order Functions in Java
    • 10.5 Exercises
  • 11. Inheritance III: Subtype Polymorphism, Comparators, Comparable
    • 11.1 A Review of Dynamic Method Selection
    • 11.2 Subtype Polymorphism vs Explicit Higher Order Functions
    • 11.3 Comparables
    • 11.4 Comparators
    • 11.5 Chapter Summary
    • 11.6 Exercises
  • 12. Inheritance IV: Iterators, Object Methods
    • 12.1 Lists and Sets in Java
    • 12.2 Exceptions
    • 12.3 Iteration
    • 12.4 Object Methods
    • 12.5 Chapter Summary
    • 12.6 Exercises
  • 13. Asymptotics I
    • 13.1 An Introduction to Asymptotic Analysis
    • 13.2 Runtime Characterization
    • 13.3 Checkpoint: An Exercise
    • 13.4 Asymptotic Behavior
    • 13.6 Simplified Analysis Process
    • 13.7 Big-Theta
    • 13.8 Big-O
    • 13.9 Summary
    • 13.10 Exercises
  • 14. Disjoint Sets
    • 14.1 Introduction
    • 14.2 Quick Find
    • 14.3 Quick Union
    • 14.4 Weighted Quick Union (WQU)
    • 14.5 Weighted Quick Union with Path Compression
    • 14.6 Exercises
  • 15. Asymptotics II
    • 15.1 For Loops
    • 15.2 Recursion
    • 15.3 Binary Search
    • 15.4 Mergesort
    • 15.5 Summary
    • 15.6 Exercises
  • 16. ADTs and BSTs
    • 16.1 Abstract Data Types
    • 16.2 Binary Search Trees
    • 16.3 BST Definitions
    • 16.4 BST Operations
    • 16.5 BSTs as Sets and Maps
    • 16.6 Summary
    • 16.7 Exercises
  • 17. B-Trees
    • 17.1 BST Performance
    • 17.2 Big O vs. Worst Case
    • 17.3 B-Tree Operations
    • 17.4 B-Tree Invariants
    • 17.5 B-Tree Performance
    • 17.6 Summary
    • 17.7 Exercises
  • 18. Red Black Trees
    • 18.1 Rotating Trees
    • 18.2 Creating LLRB Trees
    • 18.3 Inserting LLRB Trees
    • 18.4 Runtime Analysis
    • 18.5 Summary
    • 18.6 Exercises
  • 19. Hashing I
    • 19.1 Introduction to Hashing: Data Indexed Arrays
      • 19.1.1 A first attempt: DataIndexedIntegerSet
      • 19.1.2 A second attempt: DataIndexedWordSet
      • 19.1.3 A third attempt: DataIndexedStringSet
    • 19.2 Hash Code
    • 19.3 "Valid" & "Good" Hashcodes
    • 19.4 Handling Collisions: Linear Probing and External Chaining
    • 19.5 Resizing & Hash Table Performance
    • 19.6 Summary
    • 19.7 Exercises
  • 20. Hashing II
    • 20.1 Hash Table Recap, Default Hash Function
    • 20.2 Distribution By Other Hash Functions
    • 20.3 Contains & Duplicate Items
    • 20.4 Mutable vs. Immutable Types
  • 21. Heaps and Priority Queues
    • 21.1 Priority Queues
    • 21.2 Heaps
    • 21.3 PQ Implementation
    • 21.4 Summary
    • 21.5 Exercises
  • 22. Tree Traversals and Graphs
    • 22.1 Tree Recap
    • 22.2 Tree Traversals
    • 22.3 Graphs
    • 22.4 Graph Problems
  • 23. Graph Traversals and Implementations
    • 23.1 BFS & DFS
    • 23.2 Representing Graphs
    • 23.3 Summary
    • 23.4 Exercises
  • 24. Shortest Paths
    • 24.1 Introduction
    • 24.2 Dijkstra's Algorithm
    • 24.3 A* Algorithm
    • 24.4 Summary
    • 24.5 Exercises
  • 25. Minimum Spanning Trees
    • 25.1 MSTs and Cut Property
    • 25.2 Prim's Algorithm
    • 25.3 Kruskal's Algorithm
    • 25.4 Chapter Summary
    • 25.5 MST Exercises
  • 26. Prefix Operations and Tries
    • 26.1 Introduction to Tries
    • 26.2 Trie Implementation
    • 26.3 Trie String Operations
    • 26.4 Summary
    • 26.5 Exercises
  • 27. Software Engineering I
    • 27.1 Introduction to Software Engineering
    • 27.2 Complexity
    • 27.3 Strategic vs Tactical Programming
    • 27.4 Real World Examples
    • 27.5 Summary, Exercises
  • 28. Reductions and Decomposition
    • 28.1 Topological Sorts and DAGs
    • 28.2 Shortest Paths on DAGs
    • 28.3 Longest Path
    • 28.4 Reductions and Decomposition
    • 28.5 Exercises
  • 29. Basic Sorts
    • 29.1 The Sorting Problem
    • 29.2 Selection Sort & Heapsort
    • 29.3 Mergesort
    • 29.4 Insertion Sort
    • 29.5 Summary
    • 29.6 Exercises
  • 30. Quicksort
    • 30.1 Partitioning
    • 30.2 Quicksort Algorithm
    • 30.3 Quicksort Performance Caveats
    • 30.4 Summary
    • 30.5 Exercises
  • 31. Software Engineering II
    • 31.1 Complexity II
    • 31.2 Sources of Complexity
    • 31.3 Modular Design
    • 31.4 Teamwork
    • 31.5 Exerises
  • 32. More Quick Sort, Sorting Summary
    • 32.1 Quicksort Flavors vs. MergeSort
    • 32.2 Quick Select
    • 32.3 Stability, Adaptiveness, and Optimization
    • 32.4 Summary
    • 32.5 Exercises
  • 33. Software Engineering III
    • 33.1 Candy Crush, SnapChat, and Friends
    • 33.2 The Ledger of Harms
    • 33.3 Your Life
    • 33.4 Summary
    • 33.5 Exercises
  • 34. Sorting and Algorithmic Bounds
    • 34.1 Sorting Summary
    • 34.2 Math Problems Out of Nowhere
    • 34.3 Theoretical Bounds on Sorting
    • 34.4 Summary
    • 34.5 Exercises
  • 35. Radix Sorts
    • 35.1 Counting Sort
    • 35.2 LSD Radix Sort
    • 35.3 MSD Radix Sort
    • 35.4 Summary
    • 35.5 Exercises
  • 36. Sorting and Data Structures Conclusion
    • 36.1 Radix vs. Comparison Sorting
    • 36.2 The Just-In-Time Compiler
    • 36.3 Radix Sorting Integers
    • 36.4 Summary
    • 36.5 Exercises
  • 37. Software Engineering IV
    • 37.1 The end is near
  • 38. Compression and Complexity
    • 38.1 Introduction to Compression
    • 38.2 Prefix-free Codes
    • 38.3 Shannon-Fano Codes
    • 38.4 Huffman Coding Conceptuals
    • 38.5 Compression Theory
    • 38.6 LZW Compression
    • 38.7 Summary
    • 38.8 Exercises
  • 39. Compression, Complexity, P = NP
    • 39.1 Models of Compression
    • 39.2 Optimal Compression, Kolmogorov Complexity
    • 39.3 Space/Time-Bounded Compression
    • 39.4 P = NP
    • 39.5 Exercises
Powered by GitBook
On this page
  1. 19. Hashing I
  2. 19.1 Introduction to Hashing: Data Indexed Arrays

19.1.2 A second attempt: DataIndexedWordSet

Previous19.1.1 A first attempt: DataIndexedIntegerSetNext19.1.3 A third attempt: DataIndexedStringSet

Last updated 9 months ago

Our DataIndexedIntegerSet only allowed for integers, but now we want to insert the String "cat" into it. We'll call our data structure that can insert strings DataIntexedEnglishWordSet Here's a crazy idea: let's give every string a number. Maybe "cat" can be 1, "dog" can be 2 and "turtle" can be 3.

(The way this would work is –– if someone wanted to add a "cat" to our data structure, we would 'figure out' that the number for "cat" is 1, and then set present[1] to be true. If someone wanted to ask us if "cat" is in our data structure, we would 'figure out' that "cat" is 1, and check if present[1] is true.)

But then if someone tries to insert the word "potatocactus", we don't know what to do. We need to develop a general strategy so that given a string, we can figure out a number representation for it.

Here are the two main strategies we chose to use:

Strategy 1: Use the first letter.

A simple idea is to just use the first character of any given string to convert it to its number representation. However, if someone tried to insert two words with the same first letter, we have a collision, which we deal with using the next strategy.

Strategy 2: Avoid Collisions.

This representation gives a unique integer to every English word containing lowercase letters, much like using base 10 gives a unique representation to every number. We are guaranteed to not have collisions.

There are 262626 unique characters in the English lowercase alphabet. We assign each one a number: a=1,b=2,...,z=26a=1, b=2, ...,z=26a=1,b=2,...,z=26. Now, we can write any unique lowercase string in base 26. (Note that base 26 simply means that we will use 26 as the multiplier, much like we used 10 and 2 as examples above.)

‘‘cat"=3∗262+1∗261+20∗260 ``cat"=3*26^2+1*26^1+20 * 26^0‘‘cat"=3∗262+1∗261+20∗260