Comment on page
25.4 Chapter Summary
In this chapter, we learned about Minimum Spanning Trees and the Cut Property:
- MST: the lightest set of edges in a graph possible such that all the vertices are connected and acyclic.
- The Cut Property: given any cut, the minimum weight crossing edge is in the MST.
- Cut: an assignment of a graph’s nodes to two non-empty sets
- Crossing Edge: an edge which connects a node from one set to a node from the other set.
We also learned about how to find MSTs of a graph with two algorithms:
- Prim's Algorithm: Construct MST through a mechanism similar to Dijkstra's Algorithm, with the only difference of inserting vertices into the fringe not based on distance to goal vertex but distance to the MST under construction.
- Runtime:
- Kruskal's Algorithm: Construct MST by first sorting edges from lightest to heaviest, then add edges sequentially if no cycles are formed until there are V - 1 edges.
- Runtime:
- (unsorted edges)
- (sorted edges)
Last modified 8mo ago