CS61B Textbook 2025
  • Contributors
  • DISCLAIMER
  • 1. Introduction
    • 1.1 Your First Java Program
    • 1.2 Java Workflow
    • 1.3 Basic Java Features
    • 1.4 Exercises
  • 2. Defining and Using Classes
  • 3. References, Recursion, and Lists
  • 4. SLLists
  • 5. DLLists
  • 6. Arrays
  • 7. Testing
  • 8. ArrayList
  • 9. Inheritance I: Interface and Implementation Inheritance
    • 9.1 The Problem of Generality
    • 9.2 Hypernyms, Hyponyms, and the Implements Keyword
    • 9.3 Overriding, Interface Inheritance
    • 9.4 Implementation Inheritance, default
    • 9.5 Implementation vs. Interface Inheritance
    • 9.6 Abstract Data Types
  • 10. Inheritance II: Subtype Polymorphism, Comparators, Comparables, Generic Functions
    • 10.1 Polymorphism vs. Function Passing
    • 10.2 Comparables and Comparators
    • 10.3 Writing a Max Function
    • 10.4 Summary
  • 11. There is no chapter 11.
  • 12. Inheritance III: Iterators, Object Methods
    • 12.1 Lists and Sets in Java
    • 12.2 Exceptions
    • 12.3 Iteration
    • 12.4 Object Methods
    • 12.5 Chapter Summary
    • 12.6 Exercises
  • 13. Asymptotics I
    • 13.1 An Introduction to Asymptotic Analysis
    • 13.2 Runtime Characterization
    • 13.3 Checkpoint: An Exercise
    • 13.4 Asymptotic Behavior
    • 13.6 Simplified Analysis Process
    • 13.7 Big-Theta
    • 13.8 Big-O
    • 13.9 Summary
    • 13.10 Exercises
  • 14. Disjoint Sets
    • 14.1 Introduction
    • 14.2 Quick Find
    • 14.3 Quick Union
    • 14.4 Weighted Quick Union (WQU)
    • 14.5 Weighted Quick Union with Path Compression
    • 14.6 Exercises
  • 15. Asymptotics II
    • 15.1 For Loops
    • 15.2 Recursion
    • 15.3 Binary Search
    • 15.4 Mergesort
    • 15.5 Summary
    • 15.6 Exercises
  • 16. ADTs and BSTs
    • 16.2 Binary Search Trees
    • 16.3 BST Definitions
    • 16.4 BST Operations
    • 16.5 BSTs as Sets and Maps
    • 16.6 Summary
    • 16.7 Exercises
  • 17. B-Trees
    • 17.1 BST Performance
    • 17.2 Big O vs. Worst Case
    • 17.3 B-Tree Operations
    • 17.4 B-Tree Invariants
    • 17.5 B-Tree Performance
    • 17.6 Summary
    • 17.7 Exercises
  • 18. Red Black Trees
    • 18.1 Rotating Trees
    • 18.2 Creating LLRB Trees
    • 18.3 Inserting LLRB Trees
    • 18.4 Runtime Analysis
    • 18.5 Summary
    • 18.6 Exercises
  • 19. Hashing I
    • 19.1 Introduction to Hashing: Data Indexed Arrays
      • 19.1.1 A first attempt: DataIndexedIntegerSet
      • 19.1.2 A second attempt: DataIndexedWordSet
      • 19.1.3 A third attempt: DataIndexedStringSet
    • 19.2 Hash Code
    • 19.3 "Valid" & "Good" Hashcodes
    • 19.4 Handling Collisions: Linear Probing and External Chaining
    • 19.5 Resizing & Hash Table Performance
    • 19.6 Summary
    • 19.7 Exercises
  • 20. Hashing II
    • 20.1 Hash Table Recap, Default Hash Function
    • 20.2 Distribution By Other Hash Functions
    • 20.3 Contains & Duplicate Items
    • 20.4 Mutable vs. Immutable Types
  • 21. Heaps and Priority Queues
    • 21.1 Priority Queues
    • 21.2 Heaps
    • 21.3 PQ Implementation
    • 21.4 Summary
    • 21.5 Exercises
  • 22. Tree Traversals and Graphs
    • 22.1 Tree Recap
    • 22.2 Tree Traversals
    • 22.3 Graphs
    • 22.4 Graph Problems
  • 23. Graph Traversals and Implementations
    • 23.1 BFS & DFS
    • 23.2 Representing Graphs
    • 23.3 Summary
    • 23.4 Exercises
  • 24. Shortest Paths
    • 24.1 Introduction
    • 24.2 Dijkstra's Algorithm
    • 24.3 A* Algorithm
    • 24.4 Summary
    • 24.5 Exercises
  • 25. Minimum Spanning Trees
    • 25.1 MSTs and Cut Property
    • 25.2 Prim's Algorithm
    • 25.3 Kruskal's Algorithm
    • 25.4 Chapter Summary
    • 25.5 MST Exercises
  • 26. Prefix Operations and Tries
    • 26.1 Introduction to Tries
    • 26.2 Trie Implementation
    • 26.3 Trie String Operations
    • 26.4 Summary
    • 26.5 Exercises
  • 27. Software Engineering I
    • 27.1 Introduction to Software Engineering
    • 27.2 Complexity
    • 27.3 Strategic vs Tactical Programming
    • 27.4 Real World Examples
    • 27.5 Summary, Exercises
  • 28. Reductions and Decomposition
    • 28.1 Topological Sorts and DAGs
    • 28.2 Shortest Paths on DAGs
    • 28.3 Longest Path
    • 28.4 Reductions and Decomposition
    • 28.5 Exercises
  • 29. Basic Sorts
    • 29.1 The Sorting Problem
    • 29.2 Selection Sort & Heapsort
    • 29.3 Mergesort
    • 29.4 Insertion Sort
    • 29.5 Summary
    • 29.6 Exercises
  • 30. Quicksort
    • 30.1 Partitioning
    • 30.2 Quicksort Algorithm
    • 30.3 Quicksort Performance Caveats
    • 30.4 Summary
    • 30.5 Exercises
  • 31. Software Engineering II
    • 31.1 Complexity II
    • 31.2 Sources of Complexity
    • 31.3 Modular Design
    • 31.4 Teamwork
    • 31.5 Exerises
  • 32. More Quick Sort, Sorting Summary
    • 32.1 Quicksort Flavors vs. MergeSort
    • 32.2 Quick Select
    • 32.3 Stability, Adaptiveness, and Optimization
    • 32.4 Summary
    • 32.5 Exercises
  • 33. Software Engineering III
    • 33.1 Candy Crush, SnapChat, and Friends
    • 33.2 The Ledger of Harms
    • 33.3 Your Life
    • 33.4 Summary
    • 33.5 Exercises
  • 34. Sorting and Algorithmic Bounds
    • 34.1 Sorting Summary
    • 34.2 Math Problems Out of Nowhere
    • 34.3 Theoretical Bounds on Sorting
    • 34.4 Summary
    • 34.5 Exercises
  • 35. Radix Sorts
    • 35.1 Counting Sort
    • 35.2 LSD Radix Sort
    • 35.3 MSD Radix Sort
    • 35.4 Summary
    • 35.5 Exercises
  • 36. Sorting and Data Structures Conclusion
    • 36.1 Radix vs. Comparison Sorting
    • 36.2 The Just-In-Time Compiler
    • 36.3 Radix Sorting Integers
    • 36.4 Summary
    • 36.5 Exercises
  • 37. Software Engineering IV
    • 37.1 The end is near
  • 38. Compression and Complexity
    • 38.1 Introduction to Compression
    • 38.2 Prefix-free Codes
    • 38.3 Shannon-Fano Codes
    • 38.4 Huffman Coding Conceptuals
    • 38.5 Compression Theory
    • 38.6 LZW Compression
    • 38.7 Summary
    • 38.8 Exercises
  • 39. Compression, Complexity, P = NP
    • 39.1 Models of Compression
    • 39.2 Optimal Compression, Kolmogorov Complexity
    • 39.3 Space/Time-Bounded Compression
    • 39.4 P = NP
    • 39.5 Exercises
Powered by GitBook
On this page
  1. 9. Inheritance I: Interface and Implementation Inheritance

9.6 Abstract Data Types

An Abstract Data Type (ADT) is defined only by its operations, not by its implementation.

For example in Project 1A, we developed an ArrayDeque and a LinkedListDeque that had the same methods, but how those methods were written was very different. In this case, we say that ArrayDeque and LinkedListDeque are implementations of the Deque ADT.

From this description, we see that ADT's and interfaces are somewhat related. Conceptually, Deque is an interface for which ArrayDeque and LinkedListDeque are its implementations. In code, in order to express this relationship, we have the ArrayDeque and LinkedListDeque classes inherit from the Deque interface.

Some commonly used ADT's are:

  • Stacks: Structures that support last-in first-out retrieval of elements

    • push(int x): puts x on the top of the stack

    • int pop(): takes the element on the top of the stack

  • Lists: an ordered set of elements

    • add(int i): adds an element

    • int get(int i): gets element at index i

  • Sets: an unordered set of unique elements (no repeats)

    • add(int i): adds an element

    • contains(int i): returns a boolean for whether or not the set contains the value

  • Maps: set of key/value pairs

    • put(K key, V value): puts a key value pair into the map

    • V get(K key): gets the value corresponding to the key

Note: the bolded ADT's are a subinterfaces of a bigger overarching interface called Collections.

Below we show the relationships between the interfaces and classes. Interfaces are in white, classes are in blue.

ADT's allow us to make use of object oriented programming in an efficient and elegant way. For example, you saw in Project 1C how you can use an ArrayDeque or a LinkedListArrayDeque interchangeably because they are both part of the Deque ADT.

In the following chapters, we will work on defining some more ADT's and enumerating their different implementations.

Previous9.5 Implementation vs. Interface InheritanceNext10. Inheritance II: Subtype Polymorphism, Comparators, Comparables, Generic Functions

Last updated 3 months ago

Common interfaces in Java and their implementations