CS61B Textbook 2025
  • Contributors
  • DISCLAIMER
  • 1. Introduction
    • 1.1 Your First Java Program
    • 1.2 Java Workflow
    • 1.3 Basic Java Features
    • 1.4 Exercises
  • 2. Defining and Using Classes
  • 3. References, Recursion, and Lists
  • 4. SLLists
  • 5. DLLists
  • 6. Arrays
  • 7. Testing
  • 8. ArrayList
  • 9. Inheritance I: Interface and Implementation Inheritance
    • 9.1 The Problem of Generality
    • 9.2 Hypernyms, Hyponyms, and the Implements Keyword
    • 9.3 Overriding, Interface Inheritance
    • 9.4 Implementation Inheritance, default
    • 9.5 Implementation vs. Interface Inheritance
    • 9.6 Abstract Data Types
  • 10. Inheritance II: Subtype Polymorphism, Comparators, Comparables, Generic Functions
    • 10.1 Polymorphism vs. Function Passing
    • 10.2 Comparables and Comparators
    • 10.3 Writing a Max Function
    • 10.4 Summary
  • 11. There is no chapter 11.
  • 12. Inheritance III: Iterators, Object Methods
    • 12.1 Lists and Sets in Java
    • 12.2 Exceptions
    • 12.3 Iteration
    • 12.4 Object Methods
    • 12.5 Chapter Summary
    • 12.6 Exercises
  • 13. Asymptotics I
    • 13.1 An Introduction to Asymptotic Analysis
    • 13.2 Runtime Characterization
    • 13.3 Checkpoint: An Exercise
    • 13.4 Asymptotic Behavior
    • 13.6 Simplified Analysis Process
    • 13.7 Big-Theta
    • 13.8 Big-O
    • 13.9 Summary
    • 13.10 Exercises
  • 14. Disjoint Sets
    • 14.1 Introduction
    • 14.2 Quick Find
    • 14.3 Quick Union
    • 14.4 Weighted Quick Union (WQU)
    • 14.5 Weighted Quick Union with Path Compression
    • 14.6 Exercises
  • 15. Asymptotics II
    • 15.1 For Loops
    • 15.2 Recursion
    • 15.3 Binary Search
    • 15.4 Mergesort
    • 15.5 Summary
    • 15.6 Exercises
  • 16. ADTs and BSTs
    • 16.2 Binary Search Trees
    • 16.3 BST Definitions
    • 16.4 BST Operations
    • 16.5 BSTs as Sets and Maps
    • 16.6 Summary
    • 16.7 Exercises
  • 17. B-Trees
    • 17.1 BST Performance
    • 17.2 Big O vs. Worst Case
    • 17.3 B-Tree Operations
    • 17.4 B-Tree Invariants
    • 17.5 B-Tree Performance
    • 17.6 Summary
    • 17.7 Exercises
  • 18. Red Black Trees
    • 18.1 Rotating Trees
    • 18.2 Creating LLRB Trees
    • 18.3 Inserting LLRB Trees
    • 18.4 Runtime Analysis
    • 18.5 Summary
    • 18.6 Exercises
  • 19. Hashing I
    • 19.1 Introduction to Hashing: Data Indexed Arrays
      • 19.1.1 A first attempt: DataIndexedIntegerSet
      • 19.1.2 A second attempt: DataIndexedWordSet
      • 19.1.3 A third attempt: DataIndexedStringSet
    • 19.2 Hash Code
    • 19.3 "Valid" & "Good" Hashcodes
    • 19.4 Handling Collisions: Linear Probing and External Chaining
    • 19.5 Resizing & Hash Table Performance
    • 19.6 Summary
    • 19.7 Exercises
  • 20. Hashing II
    • 20.1 Hash Table Recap, Default Hash Function
    • 20.2 Distribution By Other Hash Functions
    • 20.3 Contains & Duplicate Items
    • 20.4 Mutable vs. Immutable Types
  • 21. Heaps and Priority Queues
    • 21.1 Priority Queues
    • 21.2 Heaps
    • 21.3 PQ Implementation
    • 21.4 Summary
    • 21.5 Exercises
  • 22. Tree Traversals and Graphs
    • 22.1 Tree Recap
    • 22.2 Tree Traversals
    • 22.3 Graphs
    • 22.4 Graph Problems
  • 23. Graph Traversals and Implementations
    • 23.1 BFS & DFS
    • 23.2 Representing Graphs
    • 23.3 Summary
    • 23.4 Exercises
  • 24. Shortest Paths
    • 24.1 Introduction
    • 24.2 Dijkstra's Algorithm
    • 24.3 A* Algorithm
    • 24.4 Summary
    • 24.5 Exercises
  • 25. Minimum Spanning Trees
    • 25.1 MSTs and Cut Property
    • 25.2 Prim's Algorithm
    • 25.3 Kruskal's Algorithm
    • 25.4 Chapter Summary
    • 25.5 MST Exercises
  • 26. Prefix Operations and Tries
    • 26.1 Introduction to Tries
    • 26.2 Trie Implementation
    • 26.3 Trie String Operations
    • 26.4 Summary
    • 26.5 Exercises
  • 27. Software Engineering I
    • 27.1 Introduction to Software Engineering
    • 27.2 Complexity
    • 27.3 Strategic vs Tactical Programming
    • 27.4 Real World Examples
    • 27.5 Summary, Exercises
  • 28. Reductions and Decomposition
    • 28.1 Topological Sorts and DAGs
    • 28.2 Shortest Paths on DAGs
    • 28.3 Longest Path
    • 28.4 Reductions and Decomposition
    • 28.5 Exercises
  • 29. Basic Sorts
    • 29.1 The Sorting Problem
    • 29.2 Selection Sort & Heapsort
    • 29.3 Mergesort
    • 29.4 Insertion Sort
    • 29.5 Summary
    • 29.6 Exercises
  • 30. Quicksort
    • 30.1 Partitioning
    • 30.2 Quicksort Algorithm
    • 30.3 Quicksort Performance Caveats
    • 30.4 Summary
    • 30.5 Exercises
  • 31. Software Engineering II
    • 31.1 Complexity II
    • 31.2 Sources of Complexity
    • 31.3 Modular Design
    • 31.4 Teamwork
    • 31.5 Exerises
  • 32. More Quick Sort, Sorting Summary
    • 32.1 Quicksort Flavors vs. MergeSort
    • 32.2 Quick Select
    • 32.3 Stability, Adaptiveness, and Optimization
    • 32.4 Summary
    • 32.5 Exercises
  • 33. Software Engineering III
    • 33.1 Candy Crush, SnapChat, and Friends
    • 33.2 The Ledger of Harms
    • 33.3 Your Life
    • 33.4 Summary
    • 33.5 Exercises
  • 34. Sorting and Algorithmic Bounds
    • 34.1 Sorting Summary
    • 34.2 Math Problems Out of Nowhere
    • 34.3 Theoretical Bounds on Sorting
    • 34.4 Summary
    • 34.5 Exercises
  • 35. Radix Sorts
    • 35.1 Counting Sort
    • 35.2 LSD Radix Sort
    • 35.3 MSD Radix Sort
    • 35.4 Summary
    • 35.5 Exercises
  • 36. Sorting and Data Structures Conclusion
    • 36.1 Radix vs. Comparison Sorting
    • 36.2 The Just-In-Time Compiler
    • 36.3 Radix Sorting Integers
    • 36.4 Summary
    • 36.5 Exercises
  • 37. Software Engineering IV
    • 37.1 The end is near
  • 38. Compression and Complexity
    • 38.1 Introduction to Compression
    • 38.2 Prefix-free Codes
    • 38.3 Shannon-Fano Codes
    • 38.4 Huffman Coding Conceptuals
    • 38.5 Compression Theory
    • 38.6 LZW Compression
    • 38.7 Summary
    • 38.8 Exercises
  • 39. Compression, Complexity, P = NP
    • 39.1 Models of Compression
    • 39.2 Optimal Compression, Kolmogorov Complexity
    • 39.3 Space/Time-Bounded Compression
    • 39.4 P = NP
    • 39.5 Exercises
Powered by GitBook
On this page
  • Overriding
  • Interface Inheritance
  • GRoE
  1. 9. Inheritance I: Interface and Implementation Inheritance

9.3 Overriding, Interface Inheritance

Overriding

We promised we would implement the methods specified in List61B in the AList and SLList classes, so let's go ahead and do that.

When implementing the required functions in the subclass, it's useful (and actually required in 61B) to include the @Override tag right on top of the method signature. Here, we have done that for just one method.

@Override
public void addFirst(Item x) {
    insert(x, 0);
}

It is good to note that even if you don’t include this tag, you are still overriding the method. So technically, you don't have to include it. However, including the tag acts as a safeguard for you as the programmer by alerting the compiler that you intend to override this method. Why would this be helpful you ask? Well, it's kind of like having a proofreader! The compiler will tell you if something goes wrong in the process.

Say you want to override the addLast method. What if you make a typo and accidentally write addLsat? If you don't include the @Override tag, then you might not catch the mistake, which could make debugging a more difficult and painful process. Whereas if you include @Override, the compiler will stop and prompt you to fix your mistakes before your program even runs.

Interface Inheritance

Interface Inheritance refers to a relationship in which a subclass inherits all the methods/behaviors of the superclass. As in the List61B class we defined in the Hyponyms and Hypernyms section, the interface includes all the method signatures, but not implementations. It's up to the subclass to actually provide those implementations.

This inheritance is also multi-generational. This means if we have a long lineage of superclass/subclass relationships like in Figure 4.1.1, AList not only inherits the methods from List61B but also every other class above it all the way to the highest superclass AKA AList inherits from Collection.

GRoE

Recall the Golden Rule of Equals we introduced in the first chapter. This means whenever we make an assignment a = b , we copy the bits from b into a, with the requirement that b is the same type as a. You can't assign Dog b = 1 or Dog b = new Cat() because 1 is not a Dog and neither is Cat.

Let's try to apply this rule to the longest method we wrote previously in this chapter.

public static String longest(List61B<String> list) takes in a List61B. We said that this could take in AList and SLList as well, but how is that possible since AList and List61B are different classes? Well, recall that AList shares an "is-a" relationship with List61B, Which means an AList should be able to fit into a List61B box!

Exercise 4.1.2 Do you think the code below will compile? If so, what happens when it runs?

public static void main(String[] args) {
    List61B<String> someList = new SLList<String>();
    someList.addFirst("elk");
}

Here are possible answers:

  • Will not compile.

  • Will compile, but will cause an error on the new line

  • When it runs, an SLList is created and its address is stored in the someList variable, but it crashes on someList.addFirst() since the List class doesn't implement addFirst;

  • When it runs, and SLList is created and its address is stored in the someList variable. Then the string "elk" is inserted into the SLList referred to by addFirst.

Previous9.2 Hypernyms, Hyponyms, and the Implements KeywordNext9.4 Implementation Inheritance, default

Last updated 3 months ago